MEMS 技術を用いた2重共振3軸発電素子の開発

岡田和廣 江良聡(株式会社ワコー)

Development of Double Resonant 3-axis Energy Harvesting using MEMS Technology Kazuhiro Okada, Satoshi Era (Wacoh Corp.)

This paper describes a double-resonant 3 axial Energy Harvesting using a MEMS technology. This EH consists of three beams made of SOI-substrate, two masses and piezoelectric thin films. Double resonance is given by two vibration systems, and has two resonance frequencies about all axis. 3-axis EH can generate high power from vibrations in all axis, and with a wide band frequency sufficiently. This EH can be mass-producted using Si-process.

キーワード:エネルギーハーベスティング、2重共振、3軸、全方向、PZT、圧電薄膜、SOI, MEMS (Energy Harvesting, Double resonance, 3-aixis, All directions, PZT, Piezoelectric thin film, SOI, MEMS)

1. はじめに

エネルギーハーベストとは、環境に存在するエレルギー (光、熱、振動等)を電気エネルギーに変換する技術である。 最も普及しているエネルギーハーベストは光をエネルギー 源とした発電で、大規模ソーラー発電から腕時計に内蔵さ れた小規模発電まであり、大きな市場が形成されている。一 方、振動エネルギーを電気エネルギーに変換するエネルギ ーハーベスト(以下、EH)という)が種々提案されているが 普及に至っていない。

従来の EH は代表的な例として、エレクトレットを使った 発電⁽¹⁾と圧電素子を使った発電⁽²⁾である。両者の特徴的な 構造は共に片持ち或いは両持ち型であり、梁に1個の振動 体が接続される。EH に対し垂直方向(上下)、或いは水平方 向(左右)の振動によって振動体が振動する。エレクトレッ ト型の場合は振動体の変位によって電荷が発生し、圧電型 の場合は梁に発生する応力に基づき圧電効果で電荷が発生 する。即ち従来の EH (圧電型とエレクトレット型) は振動 体を上下或いは左右方向に振動させる1軸方向の振動エネ ルギーしか利用できない。更に、1個のバネと振動体で構成 されるため、単一の共振周波数でしか発電する事が出来な い。その為、発電条件に制限があり、十分に効率よく発電す ることは困難である。たとえば、人間の動きはランダムな3 次元的な動作であり、自動車等の輸送機器では、運行中にラ ンダムな方向から振動が加わる。その為、特定の1軸方向の 振動でしか発電しない EH では発電効率が低い。更に、従来 のEHは1つの共振系が構成されるため、EHの共振周波数を 環境の周波数に合わせる必要があり、EH の普及を妨げる一 因となっている。

本稿で発表する EH は、振動体が 3 次元空間で自由に振動 し、全方向の振動に対し発電(3 軸発電)する事が出来、し かも、2 つの共振系(2 重共振)を有する為、発電可能な周 波数帯域が広がり、発電帯域は振動体の形状で自由に変え ることが出来、効率よく発電することが出来る。

また、本 EH は MEMS 技術用いて作られ、EH に不可欠な振動体となる振動体基板(ガラス、Si、金属等)と EH を構成 する SOI 基板を基板同士で接合することができ、大量生産 が可能となる。

2. EH の構造

本 EH は SOI 基板と振動体基板から構成され、SOI 基板の 表面と裏面をそれぞれ図1(a)、(b)に示す。SOI 基板の表面 には PZT 圧電薄膜(チタン酸ジルコン酸鉛)が形成され、8 個の電極が配置される。第1の梁が中央部に配置され可撓 部を有し、第2と第3の梁が第1の梁の両側に配置されて いる。第1の梁の根端部は台座に固定され、先端部には第1 の振動体が接続される領域と、第2と第3の梁の先端に第 2の振動体が接合される領域を有し、共に凸部となってい る(図1(b)参照)。第1の梁の両端の左右に2個ずつ、第2 と第3の梁の両端に1個ずつ圧電素子(合計8個)がそれぞ れの梁上に形成されている。

SOI 基板の裏面の2か所の凸部に振動体(Si、ガラス、金属等)が接合され、ダイシング等で台座と2つの振動体が切り分けられる(図2及び図7参照)。

2つの振動体の重心位置は SOI 基板上面より 2 軸下方向 にある為、X,Y,Z方向の振動に対し振動体は 2 軸方向に変位 する。そのため、振動体の動きを上下方向に制限すれば、ス トッパー構造となる。図 2 の構造では、振動体1,2 とベー ス Si との間に空間1が設けられ、振動体1,2 はその空間 1 で自由に動けるが、上方向の変位はベース Si で制限され る。また、振動体1,2 と PKG(図7参照)の底面との間に 空間2 が設けられ、振動体1,2 はその空間2 で自由に動け るが、下方向の変位は PKG の底面で制限される。2 つの振動 体は 2 軸方向、即ち全方向に対して変位が制限され、ストッ パー構造が構成されている。

1/6

また、EH は2つに振動系が折り返し直列状に配置される ことから、EH のサイズを小型化する事が出来き、低価格化 が可能となる。

図1(a) SOI 基板の表面

図1(b) SOI 基板の表面

図2 ストッパー構造

- 3. 2 重共振 3 軸の原理
 - 〈3・1〉2重共振の原理
 - 2 重共振の原理

ここで2重共振とは、1個のEHが2系統の共振系を有す るものを言う。図1に示されるようにEHは2つの共振系が 直列に折り返されて配置され、2組のバネ系と振動体から 構成されている。また、2つの振動系が互いに干渉し、幅広 い周波数帯域で発電する事ができようになっている。

・周波数特性

図3に示す測定ポイント(S1~S6)に於けるX軸、Y軸、 Z軸の周波数特性を図4(a)~(c)に示す。単純な片持ち梁 の共振特性は1次モードと2次モードが現れるあるが、本 EHは1次モードの中に2つの共振ピークが現れる。

特に、X軸とZ軸の周波数特性に顕著に表れる。

図3 周波数特性測定点

図4(a) X軸周波数特性

図4(c) Z軸周波数特性

図5(a) X軸周波数特性(応力合計值)

EH の発電量は整流回路を通して、各電極の発電量を合算 する事が出来る。厳密にいえば、電極が配置された領域の応 力の合計にすべきであるが、ここでは各測定点(S1~S6)の 応力を合計とし、それを図5(a)~(c)に示す。図5(a)~(c) の半値幅から分かる通り、各軸で発電する周波数帯域が広 がっている。これは2つの振動体の相互干渉によって起こ るものと思われる。この特性から広い周波数帯域で発電が 可能となる。図5(a)と(c)で1次共振周波数と2次共振周 波数のピークが乖離しているが2つの振動体の形状(質量、 重心位置)を変えることにより、1次共振と2次共振の間隔 を狭めることができ、発電可能な周波数帯域を広げること ができる。

〈3・2〉 3 軸発電の原理

振動体に振動による3軸方向の加速度(Ax, Ay, Az)が作用 すると、加速度は3軸方向の力に変換され、EHの振動体は 図6の如く応力が発生する。2つの振動体の重心位置が梁 の面より下面にある事から、振動体はX軸方向力Fxに対し Y軸回りに回転し、振動体1,2は2軸方向に変位し、応力 分布は図6(a)の如くなる。また、Y軸方向の力Fyに対しX 軸周りに回転し、振動体1,2は2軸方向の±方向に変位 し、応力分布は図6(b)の如くなる。そしてZ軸方向の力Fz に対しY軸周りに回転し、振動体1,2は2軸方向に変位 し、応力分布は図6(c)の如くなる。

即ち、振動体は3軸方向の加速度(振動)によって3次元 空間で自由に変位し応力が発生し、3本の梁に圧電素子を 配置すれば、圧電効果で圧電素子の電極に電荷が発生する。 この電荷を整流回路で電力に変換すれば、あらゆる方向の 振動に対し発電することが出来る。

尚、図6は特定の周波数での応力分布を示したが、応力分 布は周波数で異なり、共振或いは非共振でも異なる。

図6(a) X軸加速度作用時の応力分布

図6(b) Y軸加速度作用時の応力分布

図6(c) Z軸加速度作用時の応力分布

4. 製造方法

EHの製造工程を図7に示す。図7はEHの正確な構造の製造方法を示すものではなく、概略の製造方法を示すもので ある。

- Step1:SOI 基板の表面に下部電極(Ti/Au/Pt/SRO)と圧 電膜 PZT を成膜する。
- Step2:上部電極を形成し、上部電極と PZT 膜をエッチン グする。
- Step3:上部電極をパターニングする。
- Step4:下部電極をエッチングする。
- Step5:活性層とBOX層をエッチングする。

- Step7:溝付振動体基板を準備し、SOI 基板と溝付振動体 基板を接合する。
- Step8:ダイシングで振動体と台座を切り分ける。
- Step9:SOI 基板と振動体基板をダイシングし、個片化する。

(9) 振動体基板と SOI 基板のダイシング

上記製造工程で Step1~Step6は一般的な圧電型デバイ ス(例えば、ジャイロセンサ)の製造工程と同じであるが、 本EHの特徴的な製造工程はStep7~Step9である。Step7 で機械加工、ダイシングやエッチングで予め溝を形成した 振動体基板を用意し、Step6で作られた SOI 基板と振動体 基板と接合する。Step8で振動体基板の裏面をダイシング して、振動体と台座を切り分ける。Step9でSOI 基板と振動 体基板をダイシングして個片化する。以上の工程を以って EH素子が完成する。

図8はEHがDIP PKGに内蔵された写真であり、Lidは取り外されている。

図8 PKG 後の EH

5. 発電量の理論式と発電量⁽³⁾

EHの発電量は、発電量=電圧×電流で示され、交流理論から発電量Pは次式となる。

$P = \frac{\pi f dS \sigma_P^2 d_{31}^2 Q_m^2}{\varepsilon}$

ここで、d:電極間距離 (PZT 厚)、 ε:誘電率、d₃₁:圧電 定数、Qm:振動系のQ値、σp:応力、S:電極面積、f:周波 数である。

この式から分かる通り、誘電率:低い、圧電定数:大、 周波数:高いという条件で発電量は増大する事が分かる。

本 EH の圧電素子は PZT であるが、AIN(窒化アルミニウ ム)の圧電定数は低いものの誘電率が大幅に低い事から、 PZT に代わる候補と考えられる。非鉛を前提とするなら KNN も有力な候補となる。また、発電量は周波数に比例す る事から、本来なら高い共振周波数の EH を開発すべきで あるが、環境の主な周波数は低周波数領域にあることか ら、この領域で発電できる EH の開発が望まれる。

〈5・1〉非共振時の発電量

非共振時の発電量を図9に示す。各軸とも理論式と同様 に2次曲線となっている。各軸の発電量はほぼ FEM 解析に よる応力の大きさに準じている。

〈5・2〉 共振時の発電量

本稿の1個のEHで2つの共振系を有することから、図2 で示した第1番目(低い周波数)の共振周波数を一次共振周 波数といい、2番目(高い周波数)を2次共振周波数といい、 2つの共振周波数で測定した。

(1)1次共振周波数の発電量

各軸の1次共振周波数での発電量を図10に示す。発電 量は通りほぼ2次曲線的に変化する。

2次共振周波数の発電量

各軸の2次共振周波数の発電量を図11に示す。発電量 は全軸ともほぼ直線的に変化している。以上の事から、1 次共振では二次曲線的に変化し、2次共振では直線的に変 化する。2次共振で直線的に変化する原因は不明で、今 後、解析する必要がある。

図11 共振時の発電量

X軸、Y軸、Z軸方向の振動(各軸とも1次共振)に対し、 0.03GでX軸の発電量が16.0 μ W、Y軸が3.0 μ W、Z軸が 13.5 μ Wであった。0.04G以上ではX軸加振の時ストッパ ーが作用し、振動体の動きが制限され、発電が不安定とな る。前述の式に従えば、図11の結果から加速度16での各 軸の発電量は図12の如くなり、大きな発電量が得られる ことが分かる。なお、図10と図11の発電量は各電極の合 算値である。共振時の発電量は周波数のずれても大きく変 化するし、加振する加速度でも共振周波数は変わる。図10 と図11の測定結果は誤差を含むので注意を要する。

	0.03G加振(μW)	発電量(mW/G²)参考値
X軸加振	16.0	17.6
Y軸加振	3.0	3. 3
Z軸加振	13.5	14.9

図12 各軸の発電量

6. 課題解決法

本 EH は図 2 に示した通り、ストッパー構造を有するが、 数十G で破損する恐れがある。解決策として加速度センサ やジャイロセンサで使われている技術を応用することが考 えられる。加速度センサやジャイロセンサはスマートフォ ンやゲーム機器(勿論、自動車)に多く使われ、1.5mから の落下に耐える必要がある。1.5mからの落下で発生する加 速度は 10,000G程度であり、この加速度に耐える構造はメ カニカルストッパーとエアーダンピング効果である。

エアーダンピングは空気の粘性を使うものであり、固定 部と可動部の間隔を狭める必要がある。図1は片持ち梁構 造に為、応力を大きくするために変位を大きく必要がある が、両持ち梁構造は変位が少なくても大きな応力が発生す る。実際の開発した両持ち梁型のEHを図13に示す。図1 3は2重共振3軸EHであり、サイズは左図が10mm□、右図 5mm□である。

図13は振動体が接合されていないが、図7で示した製造法を利用でき、SOI 基板と振動体基板を接合すること

で、バッチ処理ができ大量生産が可能となる。今後両持梁 の開発を進める予定である。

図13

7. まとめ

様々な方向成分を含んだ振動エネルギーを無駄なく電気 エネルギーに変換することにより、高い発電効率の小型発 電素子(EH)を MEMS 技術を用いて開発した。

本 EH は、振動体が 3 次元空間で自由に変位し、 3 軸方向 の振動に対し発電し、しかも、 2 つの共振系を有する為、発 電可能な周波数帯域が広がり、効率よく発電することが出 来る。また、本 EH は MEMS 技術用いて作られ、振動体となる 振動体基板(ガラス、SI、金属等)と SOI 基板を基板同士で 接合することができ、バッチ処理ができ大量生産が可能と なる。

更に、本 EH は小型化(10mm□→5mm□)を図ることができ、 モバイル端末等の補助電源として用途が広がる可能性があ る。加速度センサやジャイロセンサと同様に大きな市場が 創出される可能性があると考える。

今後は、ストッパーの構造を最適することで環境にある 加速度でも発電できるようにし、更にモバイル端末で求め られている耐衝撃性を実現する。

献

文

- (1) 本間浩章・山田駿介・三屋裕幸・橋口原・年吉洋:「高パワー密度 (31Mw/cm³/G²)を実現した MEMS 環境振動発電素子とその IoT 応用」,第 35 回「センサ・マイクロマシンと応用システム」シンポジウム論文 集,30am3-PS-21(2018)
- (2) 平井翔太・神田健介・藤田孝之・前中一介:「多層 PZT 薄膜を用いた圧 電エナジーハーベスタおよび回路シュミレータモデル」,第35回「セ ンサ・マイクロマシンと応用システム」シンポジウム論文集,30pm4-PS-22(2018)
- (3) 岡田和廣、江良聡、高橋秀徳、大久保健、半田直博、熊谷清哉: "圧電 素子を用いた2重共振3軸発電素子の開発"、第39回「センサ・マイク ロマシンと応用システム」シンポジウム論文集、14P5-P-35(2022)